Abstract
We consider (self-adjoint) families of infinite matrices of noncommutative random variables such that the joint distribution of their entries is invariant under conjugation by a free quantum group. For the free orthogonal and hyperoctahedral groups, we obtain complete characterizations of the invariant families in terms of an operator-valued R-cyclicity condition. This is a surprising contrast with the Aldous–Hoover characterization of jointly exchangeable arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.