Abstract

Effects of disorder on the electronic transport properties of graphene are strongly affected by the Dirac nature of the charge carriers in graphene. This is particularly pronounced near the Dirac point, where relativistic charge carriers cannot efficiently screen the impurity potential. We have studied time-dependent quantum conductance fluctuations in graphene in the close vicinity of the Dirac point at low temperatures. We show that the low-frequency noise arises from the quantum interference effects due to scattering on slowly fluctuating impurities. An unusually large reduction of the noise power in magnetic field suggests that an additional symmetry plays an important role in this regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.