Abstract

The quantum instanton calculations of thermal rate constants for the gas-phase reaction SiH4+H-->SiH3+H2 and its deuterated analogs are presented, using an analytical potential energy surface. The quantum instanton approximation is manipulated by full dimensionality in Cartesian coordinate path integral Monte Carlo approach, thereby taking explicitly into account the effects of the whole rotation, the vibrotational coupling, and anharmonicity of the reaction system. The rates and kinetic isotope effects obtained for the temperature range of 200-1000 K show good agreements with available experimental data, which give support to the accuracy of the underlying potential surface used. In order to investigate the sole quantum effect to the rates, the authors also derive the classical limit of the quantum instanton and find that it can be exactly expressed as the classical variation transition state theory. Comparing the quantum quantities with their classical analogs in the quantum instanton formula, the authors demonstrate that the quantum correction of the prefactor is more important than that of the activation energy at the transition state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.