Abstract

The stability and instability of quantum motion is studied in the context of cavity quantum electrodynamics (QED). It is shown that the Jaynes-Cummings dynamics can be unstable in the regime of chaotic walking of an atom in the quantized field of a standing wave in the absence of any other interaction with environment. This quantum instability manifests itself in strong variations of quantum purity and entropy and in exponential sensitivity of fidelity of quantum states to small variations in the atom-field detuning. It is quantified in terms of the respective classical maximal Lyapunov exponent that can be estimated in appropriate in-out experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.