Abstract

The theory of the quantum information transmission between two semiconductor two-level quantum dots as two qubits through an intermediary photon gas in a cavity is presented. The reduced density matrix of each two-level quantum dot is the quantum information encoded into this qubit. The quantum information exchange between two distant qubits imbedded in the photon gas is performed in the form of the mutual dependence of their reduced density matrices due to the interaction between the electrons in the qubits and the photon gas. The system of rate equations for the reduced density matrix of the two-qubit system is derived. From the solution of this system of equations it follows the mutual dependence of the reduced density matrices of two distant qubits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.