Abstract

Imaging with quantum states of light promises advantages over classical approaches in terms of resolution, signal-to-noise ratio, and sensitivity. However, quantum detectors are particularly sensitive sources of classical noise that can reduce or cancel any quantum advantage in the final result. Without operating in the single-photon counting regime, we experimentally demonstrate distillation of a quantum image from measured data composed of a superposition of both quantum and classical light. We measure the image of an object formed under quantum illumination (correlated photons) that is mixed with another image produced by classical light (uncorrelated photons) with the same spectrum and polarization, and we demonstrate near-perfect separation of the two superimposed images by intensity correlation measurements. This work provides a method to mix and distinguish information carried by quantum and classical light, which may be useful for quantum imaging, communications, and security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.