Abstract

In this study, using the Hamilton–Jacobi approach, we investigated the Hawking temperature of the (2 + 1)-dimensional Warped-AdS3 black hole by considering the generalized uncertainty principle (GUP) effect. In this connection, we calculated quantum mechanical tunneling probabilities of the scalar spin-0 and Dirac spin-[Formula: see text] particles from the black hole by using the modified Klein–Gordon and Dirac equations, respectively. Then, we observed that the Hawking temperature of the black hole depends not only on radius and angular velocity of the outer horizon of the black hole, but also on the angular velocity of the inner horizon of the black hole and the total angular momentum, energy and mass of a tunneling particle. In this case, the Hawking radiation of Dirac particle is different from that of the scalar particle. Moreover, this situation shows that the Hawking temperature calculated under the GUP may give us information about which sort of particle is tunneling. And, the direct dependence of the Hawking temperature to the inner horizon’s angular velocity makes the effect of the Chandrasekhar–Friedman–Schutz (CFS) mechanism more clear in the black hole physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.