Abstract
We compute the one loop graviton contribution to the self-energy of a very light fermion on a locally de Sitter background. This result can be used to study the effect that a small mass has on the propagation of fermions through the sea of infrared gravitons generated by inflation. We employ dimensional regularization and obtain a fully renormalized result by absorbing all divergences with Bogliubov-Parasuik-Hepp-Zimmermann counterterms. An interesting technical aspect of this computation is the need for two noninvariant counterterms owing to the breaking of de Sitter invariance by our gauge condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.