Abstract

We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain `base points' of the Cauchy horizon, which are defined as `past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's `Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a `time machine'. Specifically, we prove: Theorem 1: There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2: The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in MXM) of (x,x). Theorem 2 implies quantities such as the renormalized expectation value of \phi^2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proofs rely on the `Propagation of Singularities' theorems of Duistermaat and H\"ormander.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.