Abstract

The quantum reactive flux correlation function is computed for a two-level system using an expression for the quantum equilibrium structure appropriate for strong nonadiabatic coupling, in conjunction with quantum–classical Liouville dynamics. The magnitude of the quantum mechanical enhancement of the reaction rate as a result of strong nonadiabatic coupling is studied. The reaction rate is found to increase strongly with an increase in the nonadiabatic coupling strength as well as with a decrease in the temperature. Equilibrium quantum effects increase the ground-state contribution to the rate constant but these effects decrease the excited-state contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.