Abstract

We examine the quantum gravitational entanglement of two test masses in the context of linearized General Relativity with specific non-local interaction with matter. To accomplish this, we consider an energy-momentum tensor describing two test particles of equal mass with each possessing some non-zero momentum. After discussing the quantization of the linearized theory, we compute the gravitational energy shift which is operator-valued in this case. As compared to the local gravitational interaction, we find that the change in the gravitational energy due to the self-interaction terms is finite. We then move on to study the quantum gravity induced entanglement of masses for two different scenarios. The first scenario involves treating the two test masses as harmonic oscillators with an interaction Hamiltonian given by the aforesaid gravitational energy shift. In the second scenario, each of the test masses is placed in a quantum spatial superposition of two locations, based on their respective spin states, and their entanglement being induced by the gravitational interaction and the shift in the vacuum energy. For these two scenarios, we compute both the concurrence and the von Neumann entropy; showing that an increase in the non-locality of the gravitational interaction results in a decrease in both of these quantities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.