Abstract

We study the quantum entanglement and quantum phase transition (QPT) of the anisotropic spin-$1/2$ $XY$ model with staggered Dzyaloshinskii-Moriya (DM) interaction by means of the quantum renormalization group method. The scaling of coupling constants and the critical points of the system are obtained. It is found that when the number of renormalization group iterations tends to infinity, the system exhibit a QPT between the spin-fluid and N\'eel phases which correspond with two saturated values of the concurrence for a given value of the strength of DM interaction. The DM interaction can enhance the entanglement and influence the QPT of the system. To gain further insight, the first derivative of the entanglement exhibit a nonanalytic behavior at the critical point and it directly associates with the divergence of the correlation length. This shows that the correlation length exponent is closely related to the critical exponent, i.e., the scaling behaviors of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.