Abstract
Motivated by the growing threat of distributed denial-of-service (DDoS) attacks and the emergence of quantum computing, this study introduces a novel “quanvolutional autoencoder” architecture for learning representations. The architecture leverages the computational advantages of quantum mechanics to improve upon traditional machine learning techniques. Specifically, the quanvolutional autoencoder employs randomized quantum circuits to analyze time-series data from DDoS attacks, offering a robust alternative to classical convolutional neural networks. Experimental results suggest that the quanvolutional autoencoder performs similarly to classical models in visualizing and learning from DDoS hive plots and leads to faster convergence and learning stability. These findings suggest that quantum machine learning holds significant promise for advancing data analysis and visualization in cybersecurity. The study highlights the need for further research in this fast-growing field, particularly for unsupervised anomaly detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.