Abstract
We propose a feasible way of engineering Majorana-type quasiparticles in ultracold fermionic gases on a one-dimensional (1D) optical lattice. For this purpose, imbalanced ultracold atoms interacting by the spin–orbit coupling should be hybridized with a three-dimensional Bose–Einstein condensate molecular cloud. We show that the Majorana-type excitations can be created or annihilated upon constraining the profile of a trapping potential and/or an internal scattering barier. This process is modeled within the Bogoliubov–de Gennes approach. Our study is relevant also to nanoscopic 1D superconductors, where both potentials can be imposed by electrostatic means.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.