Abstract
In complex systems, it is often the case that the region of interest forms only one part of a much larger system. The idea of joining two different quantum simulations-a high level calculation on the active region of interest, and a low level calculation on its environment-formally defines a quantum embedding. While any combination of techniques constitutes an embedding, several rigorous formalisms have emerged that provide for exact feedback between the embedded system and its environment. These three formulations: density functional embedding, Green's function embedding, and density matrix embedding, respectively, use the single-particle density, single-particle Green's function, and single-particle density matrix as the quantum variables of interest. Many excellent reviews exist covering these methods individually. However, a unified presentation of the different formalisms is so far lacking. Indeed, the various languages commonly used, functional equations for density functional embedding, diagrammatics for Green's function embedding, and entanglement arguments for density matrix embedding, make the three formulations appear vastly different. In this Account, we introduce the basic equations of all three formulations in such a way as to highlight their many common intellectual strands. While we focus primarily on a straightforward theoretical perspective, we also give a brief overview of recent applications and possible future developments. The first section starts with density functional embedding, where we introduce the key embedding potential via the Euler equation. We then discuss recent work concerning the treatment of the nonadditive kinetic potential, before describing mean-field density functional embedding and wave function in density functional embedding. We finish the section with extensions to time-dependence and excited states. The second section is devoted to Green's function embedding. Here, we use the Dyson equation to obtain equations that parallel as closely as possible the density functional embedding equations, with the hybridization playing the role of the embedding potential. Embedding a high-level self-energy within a low-level self-energy is treated analogously to wave function in density functional embedding. The numerical computation of the high-level self-energy allows us to briefly introduce the bath representation in the quantum impurity problem. We then consider translationally invariant systems to bring in the important dynamical mean-field theory. Recent developments to incorporate screening and long-range interactions are discussed. The third section concerns density matrix embedding. Here, we first highlight some mathematical complications associated with a simple Euler equation derivation, arising from the open nature of fragments. This motivates the density matrix embedding theory, where we use the Schmidt decomposition to represent the entanglement through bath orbitals. The resulting impurity plus bath formulation resembles that of dynamical mean-field theory. We discuss the numerical self-consistency associated with using a high-level correlated wave function with a mean-field low-level treatment, and connect the resulting numerical inversion to that used in density functional embedding. We finish with perspectives on the future of all three methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.