Abstract

By consistently applying the formalism of quantum electrodynamics, we developed a comprehensive theoretical framework describing the interaction of single microwave photons with an array of superconducting transmon qubits in a waveguide cavity resonator. In particular, we analyze the effects of microwave photons on the array’s response to a weak probe signal exciting the resonator. The study reveals that high quality factor cavities provide a better spectral resolution of the response, while cavities with moderate quality factors allow better sensitivity for a single-photon detection. Remarkably, our analysis showed that a single-photon signal can be detected by even a sole qubit in a cavity under the realistic range of system parameters. We also discuss how the quantum properties of the microwave radiation and electrodynamical properties of resonators affect the response of qubits’ array. Our results provide an efficient theoretical background for informing the development and design of quantum devices consisting of arrays of qubits, especially for those using a cavity where an explicit expression for the transmission or reflection is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.