Abstract

The quantum efficiency of photosynthetic energy conversion was investigated in isolated spinach chloroplasts by measurements of the quantum requirements of ATP formation by cyclic and noncyclic photophosphorylation catalyzed by ferredoxin. ATP formation had a requirement of about 2 quanta per 1 ATP at 715 nm (corresponding to a requirement of 1 quantum per electron) and a requirement of 4 quanta per ATP (corresponding to a requirement of 2 quanta per electron) at 554 nm. When cyclic and noncyclic photophosphorylation were operating concurrently at 554 nm, a total of about 12 quanta was required to generate the two NADPH and three ATP needed for the assimilation of one CO2 to the level of glucose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.