Abstract

ABSTRACTAmorphous/crystalline silicon (a-Si/c-Si) heterojunctions are of particular importance in photovoltaic (PV) energy conversion in a cost-effective way. This is principally due to the low temperature (low-T) nature of the process. In this work, we have analyzed a (n)a-Si/(i)a-Si/(p)c-Si heterojunction solar cell structure using theoretical models for internal quantum yield (IQY) and I-V behavior. We considered low-quality (low bulk lifetime), cheaper substrates. Thin, low bulk lifetime substrates in combination with a low-T bulk passivation scheme and low rear surface recombination can lead to a cost effective device fabrication process with competitive conversion efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.