Abstract

Biomolecules from small amino acids to large DNA helices are chiral, and how they interact depends on their chirality. A newly identified quantum effect could help explain how biomolecules’ chirality persists. When two molecules interact, their electron clouds reorganize. In chiral molecules, that reorganization is accompanied by electron spin polarization that enables molecules of the same chirality to interact more strongly than molecules of opposite chirality, reports a research team led by Ron Naaman and Jan M. L. Martin of the Weizmann Institute of Science and David H. Waldeck of the University of Pittsburgh (Proc. Natl. Acad. Sci. USA 2017, DOI: 10.1073/pnas.1611467114). “The mechanism that they have demonstrated is different from any that was previously reported,” comments David N. Beratan of Duke University. “If the idea holds up, it could entirely change the way we think about molecular recognition in biological and organic chemistry.” In the new work, Naaman and

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.