Abstract
Reduced-dimensionality quantum reactive scattering calculations for the C(3P) + C2H2 reaction have been carried out in order to understand the product branching dynamics of cyclic-C3H + H and linear-C3H + H. Our model treats only two degrees of freedom but can explicitly describe both of the C3H isomer product channels. The lowest triplet potential energy surface has been obtained by the hybrid density-functional method at the B3LYP/6-31G(d,p) level of theory. The calculated reaction probabilities were found to be dominated by resonance consistent with the complex-formation potential, and the results show that cyclic-C3H is preferentially formed via the cyclic-C3H2 intermediate produced by insertion of C(3P) into the CC bond. We have found that the isomerization from the cyclic-C3H2 to linear-C3H2 intermediate is suppressed by a barrier separating potential wells corresponding to these two intermediates. It has also been found that the energy dependence of the calculated total reaction cross section is in good agreement with the result of crossed molecular beam experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.