Abstract

Single molecule junctions based on selected 4,4'-biphenyldithiol and 4,4'-dicyanobiphenyl derivatives bonded to gold electrodes are analyzed from a dynamical point of view. A fully quantum mechanical description of the internal rotation of the biphenyl moiety is carried out in terms of the nuclear wavepacket dynamics obtained by the solution of the time-dependent Schrödinger equation expressed in terms of the torsion angle between the phenyl rings. The required potential energy surfaces are computed using abinitio electronic structure methods. The nature and positions of the substituents on the phenyl rings determine the features of the potential energy surfaces. The effect of the initial conditions on the time propagation of the nuclear wavepackets and, as a consequence, on the evolution of the conformational distribution is also analyzed. In addition, the conductances at zero bias for the nanojunctions were computed for different conformations of the biphenyl fragments. Weighted by the wavepacket amplitudes, non-stationary conductance expectation values, and time-averaged torsion angles and conductances for the entire simulation are obtained. The consequences of using the time-averaged values to perform a linear regression between the conductance and the square of the cosine of the dihedral angle between the phenyl rings are analyzed and compared to the usual static approach based only on the information for equilibrium geometries. The study of the time dependent conformational variations of the biphenyl moieties in the nanojunctions allows for a better understanding of the quantum chemical phenomena that affect their transport properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.