Abstract

Summary Defect passivation and surface modification of hybrid perovskite films are essential to achieving high power conversion efficiency (PCE) and stable perovskite photovoltaics. Here, we demonstrate a facile strategy that combines high PCE with high stability in CH3NH3PbI3 (MAPbI3) solar cells. The strategy utilizes inorganic perovskite quantum dots (QDs) to distribute elemental dopants uniformly across the MAPbI3 film and attach ligands to the film’s surface. Compared with pristine MAPbI3 films, MAPbI3 films processed with QDs show a reduction in tail states, smaller trap-state density, and an increase in carrier recombination lifetime. This strategy results in reduced voltage losses and an improvement in PCE from 18.3% to 21.5%, which is among the highest efficiencies for MAPbI3 devices. Ligands introduced with the aid of the QDs render the perovskite film’s surface hydrophobic—inhibiting moisture penetration. The devices maintain 80% of their initial PCE under 1-sun continuous illumination for 500 h and show improved thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.