Abstract

In this article we discuss the ground state of a parabolically confined quantum dot in the limit of very strong magnetic fields where the electron system is completely spin-polarised and all electrons are in the lowest Landau level. Without electron-electron interactions the ground state is a single Slater determinant corresponding to a droplet centred on the minimum of the confinement potential and occupying the minimum area allowed by the Pauli exclusion principle. Electron-electron interactions favour droplets of larger area. We derive exact criteria for the stability of the maximum density droplet against edge excitations and against the introduction of holes in the interior of the droplet. The possibility of obtaining exact results in the strong magnetic field case is related to important simplifications associated with broken time-reversal symmetry in a strong magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.