Abstract

A simple assay for phospholipase A2 (PLA2) enzyme was developed based on a fluorescence resonance energy transfer (FRET) probe using the quantum dot cluster (QDC)-loaded phospholipid micelles. The probe was prepared by encapsulating many small hydrophobic quantum dots (QDs) within the hydrophobic core of micelles that were formed from the coassembly of hydrogenated soy phosphatidylcholine phospholipids (HSPC) and fluorescent lipids (NBD-PC). QDCs formed within the micelle core served as the substrate for NBD fluorescence quenching through FRET. The QDC-loaded micelles showed very low background fluorescence. As the PLA2 enzyme selectively digested lipids, the NBD fluorescence was recovered from its quenched state, leading to the sensitive detection of PLA2. This assay provided a limit of detection (at a signal-to-noise ratio of 3) of 3 U/L for PLA2. In the presence of a PLA2 inhibitor, the fluorescent response of the sensor for PLA2 decreased, indicating that the assay could also be used for screening the PLA2 inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.