Abstract

We present quantum algorithms to efficiently perform discriminant analysis for dimensionality reduction and classification over an exponentially large input data set. Compared with the best-known classical algorithms, the quantum algorithms show an exponential speedup in both the number of training vectors M and the feature space dimension N. We generalize the previous quantum algorithm for solving systems of linear equations (2009 Phys. Rev. Lett. 103 150502) to efficiently implement a Hermitian chain product of k trace-normalized N ×N Hermitian positive-semidefinite matrices with time complexity of . Using this result, we perform linear as well as nonlinear Fisher discriminant analysis for dimensionality reduction over M vectors, each in an N-dimensional feature space, in time , where ϵ denotes the tolerance error, and p is the number of principal projection directions desired. We also present a quantum discriminant analysis algorithm for data classification with time complexity .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.