Abstract

We study the generation of intensity quantum correlations using four-wave mixing in a rubidium vapor. The absence of cavity in these experiments allows to deal with several spatial modes simultaneously. In the standard, amplifying, configuration, we measure relative intensity squeezing up to 9.2 dB below the standard quantum limit. We also theoretically identify and experimentally demonstrate an original regime where, despite no overall amplification, quantum correlations are generated. In this regime a four-wave mixing set-up can therefore play the role of a photonic beam splitter with non--classical properties, i.e. a device that splits a coherent state input into two quantum correlated beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.