Abstract

We demonstrate coherent control of cyclotron resonance (CR) in a two-dimensional electron gas (2DEG). We use a sequence of terahertz pulses to control the amplitude of CR oscillations in an arbitrary fashion via phase-dependent coherent interactions. We observe a self-interaction effect, where the 2DEG interacts with the terahertz field emitted by itself within the decoherence time, resulting in a revival and collapse of quantum coherence. These observations are accurately describable using {\em single-particle} optical Bloch equations, showing no signatures of electron-electron interactions, which verifies the validity of Kohn's theorem for CR in the coherent regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.