Abstract

We examine P-doped $\text{Si}⟨110⟩$ nanowires by employing a real-space pseudopotential method. We find the defect wave function becomes more localized along the nanowire axis and the donor ionization energy increases, owing to quantum confinement. It is more difficult to dope a P atom into a $\text{Si}⟨110⟩$ nanowire than to dope Si bulk because the formation energy increases with decreasing size. By comparing the formation energy for different P positions within a nanowire, we find that if a P atom at the nanowire surface can overcome the energy barrier close to the surface, there is a tendency for the dopant to reside within the nanowire core. We calculate P core levels shift as P changes position within the nanowire and provide a means for x-ray photoelectron spectroscopy experiments to determine the location of P atoms within a Si nanowire.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.