Abstract

We report the first observation of room-temperature quantum-confined photoluminescence (PL) from low-dimensional Ge(1-x)Sn(x)/Ge superlattices (SLs) up to a high Sn content of 6.96%. Both direct and indirect emissions associated with the interband transitions between minibands in the conduction bands and valence band were observed at room temperature. As the Sn content is increased, the energy difference between the lowest direct and indirect transitions is reduced, indicating an effective modification of the band structure desired for optoelectronics. The integrated PL intensity ratio of direct to indirect recombinations is significantly enhanced with increasing Sn content due to the reduced Γ-L energy separation and quantum confinement effect. Those results suggest that Sn-based low-dimensional structures are promising material for efficient Si-based lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.