Abstract
ABSTRACTWe model the hardware and software architecture for generalized Internet of Things (IoT) by quantum cloud-computing and blockchain. To reduce the measurement error and increase the efficiency of quantum entanglement (i.e. the capability of fault tolerance) in the current quantum computers and communications, we design a quantum-computing chip by modelling it as a multi-input multi-output (MIMO) quantum channel and obtain its channel capacity via our recently derived mutual information formula. To capture the internal qubit data flow dynamics of the channel, we model it via a deep convolutional neural network (DCNN) with generalized stochastic pooling in terms of resource-competition among different quantum eigenmodes or users. The pooling is corresponding to a resource allocation policy with two levels of competitions as in cognitive radio: the first one is on users’ selection in a ‘win–lose’ manner; the second one is on resourcesharing among selected users in a ‘win–win’ manner. To wit, our scheduling policy is the one by mixing a saddle point to a zero-sum game problem and a Pareto optimal Nash equilibrium point to a nonzero- sum game problem. The effectiveness of our policy is proved by diffusion modelling with theory and numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical and Computer Modelling of Dynamical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.