Abstract

The distance-minimizing data-driven computational mechanics has great potential in engineering applications by eliminating material modeling error and uncertainty. In this computational framework, the solution-seeking procedure relies on minimizing the distance between the constitutive database and the conservation law. However, the distance calculation is time-consuming and often takes up most of the computational time in the case of a huge database. In this paper, we show how to use quantum computing to enhance data-driven computational mechanics by exponentially reducing the computational complexity of distance calculation. The proposed method is not only validated on the quantum computer simulator Qiskit, but also on the real quantum computer from OriginQ. We believe that this work represents a promising step towards integrating quantum computing into data-driven computational mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.