Abstract

The rapid emergence of quantum computing offers the potential to revolutionize numerous domains, promising computational advantages over classical counterparts. This study aimed to evaluate the performance, efficiency, and robustness of selected quantum algorithmsQuantum Variational Eigensolver (VQE), Quantum Fourier Transform (QFT), and Quantum Phase Estimation (QPE)on near-term quantum devices. Our benchmarking revealed that, despite promising theoretical benefits, the practical deployment of these algorithms remains challenged by noise, error rates, and hardware limitations. The VQE showed promise in molecular modeling, while the utility of QFT and QPE in cryptography and optimization became evident. Nevertheless, their practical efficiency is contingent upon specific quantum hardware and employed error mitigation techniques. The findings underscore the transformative potential of quantum computing, but also emphasize the ongoing challenges that need addressing to make quantum computing practically advantageous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.