Abstract

We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder interferometer as a function of temperature, in the quantum Hall regime at a filling factor 2. The temperature dependence of the coherence length can be varied by a factor of 2. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between copropagating edge states. This opens the way for a strong improvement of the phase coherence of quantum Hall systems. The decoupling gate also allows us to investigate how interedge state coupling influences the quantum interferences' dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelope which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.