Abstract

We consider a quantum circuit model describing the evaporation process of black holes. We specifically examine the behavior of the multipartite entanglement represented by this model, and find that the entanglement structure depends on the black hole mass M and the frequency of the Hawking radiation ω. For sufficiently small values of , the black hole and the radiation system becomes a separable state after the Page time and a firewall-like structure appears. On the contrary, for larger values of , the entanglement between the black hole and the radiation is not lost. These behaviors imply that owing to the monogamy property of the multipartite entanglement, low frequency modes of the Hawking radiation destroy the quantum correlation between the black hole and the emitted Hawking radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.