Abstract

We derive and analyze an effective quantum Boltzmann equation in the kinetic regime for the interactions of four distinguishable types of fermionic spin- particles, starting from a general quantum field Hamiltonian. Each particle type is described by a time-dependent, 2 × 2 spin-density (‘Wigner’) matrix. We show that density and energy conservation laws as well as the H-theorem hold, and enumerate additional conservation laws depending on the interaction. The conserved quantities characterize the thermal (Fermi–Dirac) equilibrium state. We illustrate the approach to equilibrium by numerical simulations in the isotropic three-dimensional setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.