Abstract

Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealers that promise to solve certain combinatorial optimization problems of practical relevance faster than their classical analogues. The applicability of such devices for many theoretical and real-world optimization problems, which are often constrained, is severely limited by the sparse, rigid layout of the devices' quantum bits. Traditionally, constraints are addressed by the addition of penalty terms to the Hamiltonian of the problem, which in turn requires prohibitively increasing physical resources while also restricting the dynamical range of the interactions. Here, we propose a method for encoding constrained optimization problems on quantum annealers that eliminates the need for penalty terms and thereby reduces the number of required couplers and removes the need for minor embedding, greatly reducing the number of required physical qubits. We argue the advantages of the proposed technique and illustrate its effectiveness. We conclude by discussing the experimental feasibility of the suggested method as well as its potential to appreciably reduce the resource requirements for implementing optimization problems on quantum annealers, and its significance in the field of quantum computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.