Abstract

Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. Here, we discuss quantum simulation of strongly correlated fermionic systems. We focus specifically on 2D and linear geometry with nearest neighbor qubit-qubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with $O(N^2)$ gates and $O(N)$ circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those to describe the quantum states. Furthermore, we propose an algorithm to implement the 2-dimensional (2D) fermionic Fourier transformation on a 2D qubit array with only $O(N^{1.5})$ gates and $O(\sqrt N)$ circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D Fermi-Hubbard model---again on a 2D qubit array---with $O(N)$ gates and $O(\sqrt N)$ circuit depth. Finally, we discuss how these algorithms can be used to determine the ground state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.