Abstract
Anomaly detection plays a critical role in fraud detection, health care, intrusion detection, military surveillance, etc. Anomaly detection algorithm based on density estimation (called ADDE algorithm) is one of widely used algorithms. Liang et al. proposed a quantum version of the ADDE algorithm [Phys. Rev. A 99, 052310 (2019)] and it is believed that the algorithm has exponential speedups on both the number and the dimension of training data point over the classical algorithm. In this paper, we find that Liang et al.'s algorithm doesn't actually execute. Then we propose a new quantum ADDE algorithm based on amplitude estimation. It is shown that our algorithm can achieves exponential speedup on the number $M$ of training data points compared with the classical counterpart. Besides, the idea of our algorithm can be applied to optimize the anomaly detection algorithm based on kernel principal component analysis (called ADKPCA algorithm). Different from the quantum ADKPCA proposed by Liu et al. [Phys. Rev. A 97, 042315 (2018)], compared with the classical counterpart, which offer exponential speedup on the dimension $d$ of data points, our algorithm achieves exponential speedup on $M$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.