Abstract

We classify the centers of the quantized Weyl algebras that are polynomial identity algebras and derive explicit formulas for the discriminants of these algebras over a general class of polynomial central subalgebras. Two different approaches to these formulas are given: one based on Poisson geometry and deformation theory, and the other using techniques from quantum cluster algebras. Furthermore, we classify the PI quantized Weyl algebras that are free over their centers and prove that their discriminants are locally dominating and effective. This is applied to solve the automorphism and isomorphism problems for this family of algebras and their tensor products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.