Abstract
Abstract We study Sigma–Delta $(\varSigma\!\varDelta) $ quantization methods coupled with appropriate reconstruction algorithms for digitizing randomly sampled low-rank matrices. We show that the reconstruction error associated with our methods decays polynomially with the oversampling factor, and we leverage our results to obtain root-exponential accuracy by optimizing over the choice of quantization scheme. Additionally, we show that a random encoding scheme, applied to the quantized measurements, yields a near-optimal exponential bit rate. As an added benefit, our schemes are robust both to noise and to deviations from the low-rank assumption. In short, we provide a full generalization of analogous results, obtained in the classical setup of band-limited function acquisition, and more recently, in the finite frame and compressed sensing setups to the case of low-rank matrices sampled with sub-Gaussian linear operators. Finally, we believe our techniques for generalizing results from the compressed sensing setup to the analogous low-rank matrix setup is applicable to other quantization schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.