Abstract

With the need to respond to and integrate a multitude of external and internal stimuli, plant signaling is highly complex, exhibiting signaling component redundancy and high interconnectedness between individual pathways. We review here novel theoretical-experimental approaches in manipulating plant signaling towards the goal of a comprehensive understanding and targeted quantitative control of plant processes. We highlight approaches taken in the field of synthetic biology used in other systems and discuss their applicability in plants. Finally, we introduce existing tools for the quantitative analysis and monitoring of plant signaling and the integration of experimentally obtained quantitative data into mathematical models. Incorporating principles of synthetic biology into plant sciences more widely will lead this field forward in both fundamental and applied research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.