Abstract

Lettuce (Lactuca sativa L.) seeds have poor shelf life and exhibit thermoinhibition (fail to germinate) above ∼25°C. Seed priming (controlled hydration followed by drying) alleviates thermoinhibition by increasing the maximum germination temperature, but reduces lettuce seed longevity. Controlled deterioration (CD) or accelerated ageing storage conditions (i.e. elevated temperature and relative humidity) are used to study seed longevity and to predict potential seed lifetimes under conventional storage conditions. Seeds produced in 2002 and 2006 of a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas×L. serriola accession UC96US23 were utilized to identify quantitative trait loci (QTLs) associated with seed longevity under CD and conventional storage conditions. Multiple longevity-associated QTLs were identified under both conventional and CD storage conditions for control (non-primed) and primed seeds. However, seed longevity was poorly correlated between the two storage conditions, suggesting that deterioration processes under CD conditions are not predictive of ageing in conventional storage conditions. Additionally, the same QTLs were not identified when RIL populations were grown in different years, indicating that lettuce seed longevity is strongly affected by production environment. Nonetheless, a major QTL on chromosome 4 [Seed longevity 4.1 (Slg4.1)] was responsible for almost 23% of the phenotypic variation in viability of the conventionally stored control seeds of the 2006 RIL population, with improved longevity conferred by the Salinas allele. QTL analyses may enable identification of mechanisms responsible for the sensitivity of primed seeds to CD conditions and breeding for improved seed longevity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.