Abstract
Rhizobia are nitrogen-fixing bacteria that establish a symbiotic relationship with leguminous plants. To understand the mechanism by which rhizobia alter their metabolism to establish successful nitrogen-fixing symbiotic relationship with hosts, Lotus japonicus were inoculated with Mesorhizobium loti. Bacteroids were isolated from nodules harvested at 2weeks (the early stage of nodule development), and at 3 and 4weeks (the intermediate stage of nodule development) post-inoculation. Using a quantitative time-course proteome analysis, we quantified the variations in the production of 537 proteins in M. loti bacteroids during the course of nodule maturation. The results revealed significant changes in the carbon and amino acid metabolisms by M. loti upon differentiating into bacteroids. Furthermore, our findings suggested that M. loti enters a nitrogen-deficient condition during the early stages of nodule development, and then a nitrogen-rich condition during the intermediate stages of nodule development. In addition, our data indicated that M. loti assimilated ammonia during the intermediate stages of nodule development. Our results provide new insights into the course of physiological transitions undergone by M. loti during nodule maturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.