Abstract
BackgroundAfter years of efforts on the control of malaria, it remains as a most deadly infectious disease. A major problem for the available anti-malarial drugs is the occurrence of drug resistance in Plasmodium. Developing of new compounds or modification of existing anti-malarial drugs is an effective approach to face this challenge. Quantitative structure activity relationship (QSAR) modelling plays an important role in design and modification of anti-malarial compounds by estimation of the activity of the compounds.MethodsIn this research, the QSAR study was done on anti-malarial activity of 33 imidazolopiperazine compounds based on artificial neural networks (ANN). The structural descriptors of imidazolopiperazine molecules was used as the independents variables and their activity against 3D7 and W2 strains was used as the dependent variables. During modelling process, 70% of compound was used as the training and two 15% of imidazolopiperazines were used as the validation and external test sets. In this work, stepwise multiple linear regression was applied as the valuable selection and ANN with Levenberg–Marquardt algorithm was utilized as an efficient non-linear approach to correlate between structural information of molecules and their anti-malarial activity.ResultsThe sufficiency of the suggested method to estimate the anti-malarial activity of imidazolopiperazine compounds at two 3D7 and W2 strains was demonstrated using statistical parameters, such as correlation coefficient (R2), mean square error (MSE). For instance R2train = 0.947, R2val = 0.959, R2test = 0.920 shows the potential of the suggested model for the prediction of 3D7 activity. Different statistical approaches such as and applicability domain (AD) and y-scrambling was also showed the validity of models.ConclusionQSAR can be an efficient way to virtual screening the molecules to design more efficient compounds with activity against malaria (3D7 and W2 strains). Imidazolopiperazines can be good candidates and change in the structure and functional groups can be done intelligently using QSAR approach to rich more efficient compounds with decreasing trial–error runs during synthesis.
Highlights
After years of efforts on the control of malaria, it remains as a most deadly infectious disease
At the step for evaluation the randomized distribution of the molecules belong to the three data set in the space of descriptors, principal component analysis (PCA) was applied
The results of stepwise multiple linear regression (SMLR) for the selected variables are summarized in Additional file 1: Tables S1–S3 for the 3D7 model and in Additional file 1: Table S4–S6 for the W2 model
Summary
After years of efforts on the control of malaria, it remains as a most deadly infectious disease. A major problem for the available anti-malarial drugs is the occurrence of drug resistance in Plasmodium. Developing of new compounds or modification of existing anti-malarial drugs is an effective approach to face this challenge. After years of efforts to fight and control of malaria, it is still a prevalent and deadly infectious disease, especially in the third-world countries in Africa, Asia, and South America [1, 2]. The major problem in the treatment of malaria is that Plasmodium parasites become resistant to anti-malarial drugs. Developing new anti-malarial agents is a necessity and chemical modification of existing compounds is one of the strategies available [1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.