Abstract

Fluorophore-assisted carbohydrate electrophoresis (FACE) is an analytical method for characterizing carbohydrate chain length that has been applied to neutral, charged, and N-linked oligosaccharides and that has been implemented using diverse separation platforms, including polyacrylamide gel electrophoresis and capillary electrophoresis. In this article, we describe three substantial improvements to FACE: (i) reducing the amount of starch and APTS required in labeling reactions and systematically analyzing the effect of altering the starch and 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) concentrations on the reproducibility of the FACE peak area distributions; (ii) implementing FACE on a multiple capillary DNA sequencer (an ABI 3130 xl), enabling higher throughput than is possible on other separation platforms; and (iii) developing a protocol for producing quantitative output of peak heights and areas using genetic marker analysis software. The results of a designed experiment to determine the effect of decreasing both the starch and fluorophore concentrations on the sensitivity and reproducibility of FACE electrophoregrams are presented. Analysis of the peak area distributions of the FACE electrophoregrams identified the labeling reaction conditions that resulted in the smallest variances in the peak area distributions while retaining strong fluorescence signals from the capillary-based DNA sequencer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.