Abstract

Increasing evidence supports a role for altered mitochondrial function in the pathogenesis of neuron degeneration in Alzheimer's disease (AD). Although several studies have examined the effect of amyloid beta peptide (Abeta), on activities of individual proteins in primary neuron cultures, there have been no studies of the effects of Abeta on the mitochondrial proteome. Here, we quantitatively measured changes in mitochondrial proteins of primary rat cortical neuron cultures exposed to 25 microM Abeta(25-35) for 16 h using isotope coded affinity tag (ICAT) labeling and 2-dimensional liquid chromatography/tandem mass spectrometry (2D-LC/MS/MS) which allows simultaneous identification and quantification of cysteine-containing proteins. The analysis of enriched mitochondrial fractions identified 10 proteins including sodium/potassium-transporting ATPase, cofilin, dihydropyrimidinase, pyruvate kinase and voltage dependent anion channel 1 that were statistically significantly (P < 0.05) altered in Abeta-treated cultures. Elevations of proteins associated with energy production suggest that cells undergoing Abeta-mediated apoptosis increase synthesis of proteins essential for ATP production and efflux in an attempt to maintain metabolic function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.