Abstract

Today’s thermodynamics is largely based on the combined law for equilibrium systems and statistical mechanics derived by Gibbs in 1873 and 1901, respectively, while irreversible thermodynamics for nonequilibrium systems resides essentially on the Onsager Theorem as a separate branch of thermodynamics developed in 1930s. Between them, quantum mechanics was invented and quantitatively solved in terms of density functional theory (DFT) in 1960s. These three scientific domains operate based on different principles and are very much separated from each other. In analogy to the parable of the blind men and the elephant articulated by Perdew, they individually represent different portions of a complex system and thus are incomplete by themselves alone, resulting in the lack of quantitative agreement between their predictions and experimental observations. Over the last two decades, the author’s group has developed a multiscale entropy approach (recently termed as zentropy theory) that integrates DFT-based quantum mechanics and Gibbs statistical mechanics and is capable of accurately predicting entropy and free energy of complex systems. Furthermore, in combination with the combined law for nonequilibrium systems presented by Hillert, the author developed the theory of cross phenomena beyond the phenomenological Onsager Theorem. The zentropy theory and theory of cross phenomena jointly provide quantitative predictive theories for systems from electronic to any observable scales as reviewed in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.