Abstract
For a general class of linear collisional kinetic models in the torus, including in particular the linearized Boltzmann equation for hard spheres, the linearized Landau equation with hard and moderately soft potentials and the semi-classical linearized fermionic and bosonic relaxation models, we prove explicit coercivity estimates on the associated integro-differential operator for some modified Sobolev norms. We deduce the existence of classical solutions near equilibrium for the full nonlinear models associated with explicit regularity bounds, and we obtain explicit estimates on the rate of exponential convergence towards equilibrium in this perturbative setting. The proof is based on a linear energy method which combines the coercivity property of the collision operator in the velocity space with transport effects, in order to deduce coercivity estimates in the whole phase space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.