Abstract

The mammalian gastrointestinal (GI) tract is inhabited by over a hundred species of symbiotic bacteria. Differences among individuals in the composition of the GI flora may contribute to variation in in vivo experimental analyses and disease susceptibility. To investigate potential interindividual differences in GI flora composition, we developed real-time quantitative PCR-based assays for the detection of the eight members of the Altered Schaedler Flora (ASF) as representative members of different bacterial niches within the mammalian GI tract. Quantitative and reproducible strain-specific variations in the numbers of the ASF members were observed across 23 different barrier-housed inbred mouse strains, suggesting that the ASF assays can be used as sentinels for changes in GI flora composition. A significant cage effect was also detected. Isogenic mice that cohabited at weaning, whether from the same or different litters, showed little variation in ASF profiles. Conversely, litters split among different cages at weaning showed divergence in ASF profiles after three weeks. Individual ASF profiles, once established, were highly stable over time in the absence of environmental perturbation. Furthermore, cohabitation of different inbred strains maintained most of the interstrain variation in the GI flora, supporting a role of host genetics in determining GI flora composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.