Abstract

BackgroundThe use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46–74 years) with known or suspected coronary artery disease underwent 15O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values.ResultsStress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00.ConclusionsPET-MR-based MBF values correlated well with PET-CT-based MBF values and the parametric PET-MR images were excellent. TOF and reconstruction settings had little impact on MBF values.

Highlights

  • The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function

  • This scanner is equipped with 24 rings of 6 × 6 × 30 mm BGO detectors grouped in blocks of 6 × 6 crystals coupled to a single position-sensitive photomultiplier tube (PMT)

  • This scanner is equipped with 45 rings of 3.95 × 5.3 × 25 mm LYSO detectors grouped in blocks of 4 × 3 crystals coupled to 3 × 2 silicon photomultipliers (SiPM) each

Read more

Summary

Introduction

The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. Little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PETMR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of timeof-flight and reconstruction parameters on quantitative MBF values. Several imaging modalities are being used in assessment of myocardial perfusion and in detection of coronary artery disease (CAD). Cardiac MRI has become the gold standard in assessment of myocardial volume, myocardial mass and ventricular function and is used for tissue characterisation and vascular flow measurements

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.